
Flask-Potion Documentation
Release 0.0.0

Lars Schöning

Sep 02, 2017

Contents

1 User’s guide 3
1.1 Installation . 3
1.2 Quick Start Guide . 3
1.3 Field types . 17
1.4 Filters . 21
1.5 Api class . 24
1.6 Routes & Route Sets . 25
1.7 Resources . 27
1.8 Managers . 30
1.9 Signals . 32
1.10 Permissions with Flask-Principal . 34
1.11 Advanced Recipes . 40

Python Module Index 43

i

ii

Flask-Potion Documentation, Release 0.0.0

Flask-Potion is a powerful Flask extension for building RESTful JSON APIs. Potion features include validation,
model resources and routes, relations, object permissions, filtering, sorting, pagination, signals, and automatic API
schema generation.

Potion ships with backends for SQLAlchemy, peewee and MongoEngine models. It is possible to add backends for
other data stores, or even to use a subset of Potion without any data store at all.

Contents 1

Flask-Potion Documentation, Release 0.0.0

2 Contents

CHAPTER 1

User’s guide

Installation

Install Flask-Potion using pip:

pip install flask-potion

Flask-Potion requires Python version 2.7 or 3.3+. It works best with Python 3.x.

If you are using SQLAlchemy for your backend, you should also install Flask-SQLAlchemy. For any backend you
use, you’ll need to also install their respective packages.

Quick Start Guide

This introductory guide describes how to set up an API using SQLAlchemy with Flask-Potion, query it, and attach
routes to resources.

A minimal Flask-Potion API looks like this:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_potion import Api, ModelResource

app = Flask(__name__)
db = SQLAlchemy(app)

class Book(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(), nullable=False)
year_published = db.Column(db.Integer)

db.create_all()

3

Flask-Potion Documentation, Release 0.0.0

class BookResource(ModelResource):
class Meta:

model = Book

api = Api(app)
api.add_resource(BookResource)

if __name__ == '__main__':
app.run()

Save this as server.py and run it using your Python interpreter. The application will create an in-memory SQLite
database, so the state of the application will reset every time the server is restarted.

$ python server.py

* Running on http://127.0.0.1:5000/

We’re going to use the excellent HTTPie command line client (seen here as http) to query the API. Let’s first see if
there are any book items on our server:

http :5000/book

HTTP/1.0 200 OK
Content-Length: 2
Content-Type: application/json
Date: Sat, 07 Feb 2015 10:25:26 GMT
Link: </book?page=1&per_page=20>; rel="self",</book?page=1&per_page=20>; rel="last"
Server: Werkzeug/0.9.6 Python/3.3.2
X-Total-Count: 0

[]

We can see that there are no book items. As the Link and X-Total-Count headers show us, the resource is
paginated to 20 items per page (more on that under Pagination). We’re now going to create a book:

$ http -v :5000/book title="On the Origin of Species" year_published:=1859

POST /book HTTP/1.1
Accept: application/json
Accept-Encoding: gzip, deflate, compress
Content-Length: 61
Content-Type: application/json; charset=utf-8
Host: 127.0.0.1:5000
User-Agent: HTTPie/0.7.2

{
"title": "On the Origin of Species",
"year_published": 1859

}

HTTP/1.0 200 OK
Content-Length: 80
Content-Type: application/json
Date: Sat, 07 Feb 2015 11:12:33 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{

4 Chapter 1. User’s guide

http://httpie.org

Flask-Potion Documentation, Release 0.0.0

"$uri": "/book/1",
"title": "On the Origin of Species",
"year_published": 1859

}

What did we do here? We used a ModelResource and defined a model in its Meta property. Meta and Schema
are the two of the primary ways to describe resources (a third being Route, which we’ll go into later).

Meta class attributes

The Meta class is how the basic functions of a resource are defined. Besides model, there are a few other properties
that control how the ModelResource maps to the SQLAlchemy model:

At-
tribute
name

Default Description

model — The Flask-SQLAlchemy model
name — Name of the resource; defaults to the lower-case of the model’s table name
id_attribute'id' With SQLAlchemy models, defaults to the name of the primary key of model.
id_converter–– Flask URL converter for resource routes. Typically this is inferred from

id_field_class.
id_field_classfields.

Integer
Field class to use for "$id", also used to determine the URL route converter for
resource routes.

in-
clude_id

False Whether to include the id of the item as an "$id" attribute. The default is a
"$uri" attribute with the URI of the item.

in-
clude_type

False Whether to include a "$type" attribute with the type of the resource

in-
clude_fields

— A list of fields that should be imported from the model. By default, all columns other
than foreign key and primary key columns are imported.
sqlalchemy.orm.relationship() model attributes and hybrid properties
cannot be defined in this way and have to be specified explicitly in Schema.

ex-
clude_fields

— A list of fields that should not be imported from the model.

re-
quired_fields

— Fields that are automatically imported from the model are automatically required if
their columns are not nullable and do not have a default.

read_only_fields— A list of fields that are returned by the resource but are ignored in POST and PATCH
requests. Useful for e.g. timestamps.

filters True Used to configure what properties of an item can be filtered and what filters can be
used.

write_only_fields— A list of fields that can be written to but are not returned. For secret stuff.
title — JSON-schema title declaration
descrip-
tion

— JSON-schema description declaration

manager SQLAlchemyManagerA Manager class that takes care of reading from and writing to the data store
key_converters(RefKey(),

IDKey())

A list of natural_keys.Key instances. The first is used for formatting
fields.ToOne references.

natu-
ral_key

None A string, or tuple of strings, corresponding to schema field names, for a natural key.

ex-
clude_routes

— A list of rel-strings for any previously defined routes that should not be published for
this resource.

1.2. Quick Start Guide 5

http://docs.sqlalchemy.org/en/latest/orm/relationship_api.html#sqlalchemy.orm.relationship

Flask-Potion Documentation, Release 0.0.0

Schema class attributes

Schema is used to define a default schema for a resource. The Schema class contains a set of fields that inherit from
fields.Raw

Using ModelResource with a SQLAlchemy model, the schema is for the most part auto-generated for us. Yet it still
on occasion makes sense to manually describe a field. The reference field types, fields.ToOne and fields.
ToMany , also need to be set by hand.

For instance, our book resource only stores books produced by the printing press. Let’s acknowledge this by setting a
sensible minimum for year_published:

from flask_potion import fields

class BookResource(ModelResource):
class Meta:

model = Book

class Schema:
year_published = fields.Integer(minimum=1400)

This also serves as our introduction to error messages:

$ http :5000/book title="Jikji" year_published:=1377

HTTP/1.0 400 BAD REQUEST
Content-Length: 187
Content-Type: application/json
Date: Sat, 07 Feb 2015 11:52:05 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"errors": [

{
"path": [

"year_published"
],
"validationOf": {

"minimum": 1400
}

}
],
"message": "Bad Request",
"status": 400

}

Oops.

Relationships

RESTful relationships create a variety of API client design and caching problems that Potion has been written to
address. To preface what you will see now, it needs to be said that Potion should be used with SPDY or the upcoming
HTTP/2 as it generates more requests than some alternative approaches.

We now have both an author and a book resource:

6 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from sqlalchemy.orm import backref
from flask_potion.routes import Relation
from flask_potion import ModelResource, fields, Api

app = Flask(__name__)
db = SQLAlchemy(app)

class Author(db.Model):
id = db.Column(db.Integer, primary_key=True)
first_name = db.Column(db.String(), nullable=False)
last_name = db.Column(db.String(), nullable=False)

class Book(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey(Author.id), nullable=False)

title = db.Column(db.String(), nullable=False)
year_published = db.Column(db.Integer)

author = db.relationship(Author, backref=backref('books', lazy='dynamic'))

db.create_all()

class BookResource(ModelResource):
class Meta:

model = Book

class Schema:
author = fields.ToOne('author')

class AuthorResource(ModelResource):
books = Relation('book')

class Meta:
model = Author

api = Api(app)
api.add_resource(BookResource)
api.add_resource(AuthorResource)

if __name__ == '__main__':
app.run()

We’re going to add two authors and books:

http :5000/author first_name=Charles last_name=Darwin

HTTP/1.0 200 OK
Content-Length: 69
Content-Type: application/json
Date: Sat, 07 Feb 2015 12:11:33 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"$uri": "/author/1",

1.2. Quick Start Guide 7

Flask-Potion Documentation, Release 0.0.0

"first_name": "Charles",
"last_name": "Darwin"

}

Note: At the moment, references always need to be declared as json-ref objects. This is tedious during command-line
use, and an enhancement to Potion to support using ids and natural keys in requests is already in the works.

http :5000/book title="On the Origin of Species" author:=1 year_published:=1859

HTTP/1.0 200 OK
Content-Length: 113
Content-Type: application/json
Date: Sat, 07 Feb 2015 12:16:11 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"$uri": "/book/1",
"author": {

"$ref": "/author/1"
},
"title": "On the Origin of Species",
"year_published": 1859

}

http :5000/author first_name=James last_name=Watson > /dev/null
http :5000/book title="The Double Helix" author:=2 year_published:=1968 > /dev/null

As you can see, references in Potion are JSON Reference draft reference objects. These objects always have the same
format — {"$ref": 'target-uri'} — and can easily be recognized by an API client when deserializing
JSON. An API client can first check its cache for the target item and, if necessary, query it from the server.

Requests allow both plain ids and json-ref objects — it’s all the same to the server.

There are now two ways available to us for querying the relationship between the resources. The first is the author’s
Relation('book'), which created a new route on the author resource with references to the book resource. Let’s
query Charles’ books:

http :5000/author/1/books

HTTP/1.0 200 OK
Content-Length: 21
Content-Type: application/json
Date: Sat, 07 Feb 2015 12:18:45 GMT
Link: </author/1/books?page=1&per_page=20>; rel="self",</author/1/books?page=1&per_
→˓page=20>; rel="last"
Server: Werkzeug/0.9.6 Python/3.3.2
X-Total-Count: 1

[
{

"$ref": "/book/1"
}

]

8 Chapter 1. User’s guide

https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03

Flask-Potion Documentation, Release 0.0.0

This is not a particularly good example for using Relation, and in fact there are few at all. There is a more RESTful
way for querying a one-to-many relation:

http GET :5000/book where=='{"author": {"$ref": "/author/1"}}'

HTTP/1.0 200 OK
Content-Length: 115
Content-Type: application/json
Date: Sat, 07 Feb 2015 12:34:18 GMT
Link: </book?page=1&per_page=20>; rel="self",</book?page=1&per_page=20>; rel="last"
Server: Werkzeug/0.9.6 Python/3.3.2
X-Total-Count: 1

[
{

"$uri": "/book/1",
"author": {

"$ref": "/author/1"
},
"title": "On the Origin of Species",
"year_published": 1859

}
]

So far, in our queries, we have used item ids and json-ref objects to refer to items. These surrogate keys can be difficult
to remember and tedious to work with on the command line — but Potion has a solution:

Natural Keys

A natural key is a unique identifier that exists in the real world and is often more memorable than a surrogate key.
Potion ships with support for declaring natural keys.

The author model has both a first name and a last name. Together, these two names form a natural key for the author
resource. We’ll update both our database model and our resource to reflect this:

class Author(db.Model):
id = db.Column(db.Integer, primary_key=True)
first_name = db.Column(db.String(), nullable=False)
last_name = db.Column(db.String(), nullable=False)

__table_args__ = (
UniqueConstraint('first_name', 'last_name'), # unique constraint added here

)

class AuthorResource(ModelResource):
class Meta:

model = Author
natural_key = ('first_name', 'last_name') # natural key declaration added

→˓here

Now our earlier query can be written using the full name of the author:

http GET :5000/book where=='{"author": ["Charles", "Darwin"]}'

Natural keys can be declared as either a single unique field or a tuple of fields that are unique together.

1.2. Quick Start Guide 9

Flask-Potion Documentation, Release 0.0.0

Filtering & Sorting

Instances of a ModelResource can be filtered using the where query and sorted using sort.

We were interested in relations, so we filtered a fields.ToOne field for equality. Most other field types can also be
filtered and support custom comparators. Here are some examples of where queries:

http :5000/book where=='{"year_published": {"$gt": 1900}}' # Book.year_
→˓published > 1900
http :5000/author where=='{"first_name": {"$startswith": "C"}}' # Author.
→˓first_name starts with 'C'
http :5000/author where=='{"first_name": {"$in": ["Charles", "James"]}}' # Author.
→˓first_name in ['Charles', 'James']
http :5000/book where=='{"title": "The Double Helix", "year_published": {"$lt": 2000}}
→˓'

Here are some examples of sort queries:

http :5000/book sort=='{"year_published": false}' # Book.year_
→˓published ascending
http :5000/book sort=='{"year_published": false, "title": true}' # Book.year_
→˓published ascending, Book.title descending

Both where and sort need to be valid JSON, so use double quotes.

See Filters for a full list of possible filters.

Pagination

Potion pagination is borrowed from the GitHub API. Pages are requested using the page and per_page query
string arguments. The Link header lists links to the current, first, previous, next, and last page. In addition, the
X-Total-Count header contains a count of the total number of items.

HTTP/1.0 200 OK
Content-Type: application/json
Link: </book?page=1&per_page=20>; rel="self",

</book?page=3&per_page=20>; rel="last",
</book?page=2&per_page=20>; rel="next"

X-Total-Count: 55

ModelResource items are paginated automatically.

The default and maximum number of items per page can be configured using the 'POTION_DEFAULT_PER_PAGE'
and 'POTION_MAX_PER_PAGE' configuration variables.

Routes

Routes are added using decorators named after the HTTP methods, declared either with or without arguments. The
format for the route decorators is:

Route.METHOD(rule = None,
rel=None,
attribute=None,
schema=None,
response_schema=None)

10 Chapter 1. User’s guide

http://developer.github.com/v3/#pagination

Flask-Potion Documentation, Release 0.0.0

A Route instance itself also has decorators for each method, so that they can define different functions for different
HTTP methods on the same endpoint.

Each method has its own schema and response_schema used to decode, verify, and encode requests and re-
sponses. If schema is a schema.FieldSet, its properties are spread over the route function as keyword argu-
ments.

ItemRoute is a special route, used with ModelResource, whose rule is prefixed '/<id_converter:id>'
and that passes the item as the first function argument.

Here is a slightly different Book model (a rating has been added) and a book resource with some of the different kinds
of routes:

class Book(db.Model):
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(), nullable=False)
year_published = db.Column(db.Integer)
rating = db.Column(db.Integer, default=5)

class BookResource(ModelResource):
class Meta:

model = Book
excluded_fields = ['rating']

@ItemRoute.GET('/rating')
def rating(self, book) -> fields.Integer():

return book.rating

@rating.POST
def rate(self, book, value: fields.Integer(minimum=1, maximum=10)) -> fields.

→˓Integer():
self.manager.update(book, {"rating": value})
return value

@ItemRoute.GET
def is_recent(self, book) -> fields.Boolean():

return datetime.date.today().year <= book.year_published + 10

@Route.GET
def genres(self) -> fields.List(fields.String, description="A list of genres"):

return ['biography', 'history', 'essay', 'law', 'philosophy']

Note: This example makes use of function annotations, which appeared in Python 3.0. If you are developing for
Python 2.x, you will have to set these properties manually using the schema and response_schema decorator
arguments:

@Route.POST('/rating',
schema=FieldSet({"value": fields.Integer(minimum=1, maximum=5)}),
response_schema=fields.Integer())

def rate(self, book, value):
self.manager.update(book, {"rating": value})
return value

After adding a book, we can give these routes a spin:

http GET :5000/book/1/rating

1.2. Quick Start Guide 11

https://www.python.org/dev/peps/pep-3107/

Flask-Potion Documentation, Release 0.0.0

HTTP/1.0 200 OK
Content-Length: 3
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:16:37 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

5

http POST :5000/book/1/rating value:=7

HTTP/1.0 200 OK
Content-Length: 1
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:17:59 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

7

http GET :5000/book/1/is-recent

HTTP/1.0 200 OK
Content-Length: 5
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:20:19 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

false

http GET :5000/book/genres

HTTP/1.0 200 OK
Content-Length: 54
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:20:44 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

[
"biography",
"history",
"essay",
"law",
"philosophy"

]

It is worth noting that ModelResource is not much more than the empty Resource type with a few custom routes.
Route and Resource are the backbone of Potion.

Route Sets & Mixins

In the example above, we have one property — rating — which can be read and updated by accessing a specific route.
Potion provides a shortcut for this common pattern. Let’s use ItemAttributeRoute to rewrite the rating getter
and setter:

12 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

class BookResource(ModelResource):
rating = ItemAttributeRoute(fields.Number)

...

Done. Now, this isn’t strictly a set of routes — but it implements RouteSet, which can be used to write reusable
groups of routes. (Relation is also a route set).

Two additional built-in route-sets are planned: ItemMapAttribute and ItemSetAttribute for dictionary and
collection item properties.

A second pattern for reusability is the mixin. They can augment the Schema and Meta attributes and add new routes
and route sets to the resources. Here is an example mixin, adding two new fields to the schema:

class MetaMixin(object):
class Schema:

created_at = fields.DateTime(io='r')
updated_at = fields.DateTime(io='r', nullable=True)

class BookResource(MetaMixin, ModelResource):
...

Mixin and Resource base classes are evaluated left-to-right.

Self-documenting API

It can be a huge hassle to write and maintain the documentation of an API—not with Potion! In fact, every API you
saw in this quick start guide was fully documented.

Potion documents itself using JSON Hyper-Schema. A /schema route at the route of the API enumerates all API
resources and the location of their schemas. The schema of a ModelResource can get quite overwhelming, so to
begin with we’ll look at a very simple resource:

from flask import Flask
from flask_potion import Api, Resource, fields

app = Flask(__name__)

api = Api(app)
api.add_resource(Resource)

if __name__ == '__main__':
app.run()

http :5000/schema

HTTP/1.0 200 OK
Content-Length: 138
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:32:21 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"$schema": "http://json-schema.org/draft-04/hyper-schema#",
"definitions": {},
"properties": {

1.2. Quick Start Guide 13

http://json-schema.org/latest/json-schema-hypermedia.html

Flask-Potion Documentation, Release 0.0.0

"resource": {
"$ref": "/resource/schema#"

}
}

}

http :5000/resource/schema

HTTP/1.0 200 OK
Content-Length: 140
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:32:37 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"$schema": "http://json-schema.org/draft-04/hyper-schema#",
"links": [

{
"href": "/resource/schema",
"method": "GET",
"rel": "describedBy"

}
]

}

As we can see from the schema above, Resource has a very simple schema with a single link – its schema! This
example is perhaps too simple, so we’re going to complete the guide with a slightly more complicated resource and
schema:

class SimpleResource(Resource):
class Meta:

name = 'simple'

class Schema:
name = fields.String()
value = fields.Number()

@Route.POST
def create(self, value: fields.Number()) -> fields.Inline('self'):

return {"name": "foo", "value": value}

api.add_resource(SimpleResource)

http :5000/simple/schema

HTTP/1.0 200 OK
Content-Length: 429
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:38:01 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"$schema": "http://json-schema.org/draft-04/hyper-schema#",
"links": [

{
"href": "/simple/create",

14 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

"method": "POST",
"rel": "create",
"schema": {

"additionalProperties": false,
"properties": {

"value": {
"type": "number"

}
},
"type": "object"

},
"targetSchema": {

"$ref": "#"
}

},
{

"href": "/simple/schema",
"method": "GET",
"rel": "describedBy"

}
],
"properties": {

"name": {
"type": "string"

},
"value": {

"type": "number"
}

},
"type": "object"

}

http :5000/simple/create value:=1.23

HTTP/1.0 200 OK
Content-Length: 30
Content-Type: application/json
Date: Sat, 07 Feb 2015 16:40:59 GMT
Server: Werkzeug/0.9.6 Python/3.3.2

{
"name": "foo",
"value": 1.23

}

In production APIs developed using Potion, resource routes are often decorated using an authentication decorator
provided when initializing Api.

To make the documentation of an API protected by decorators available to unauthenticated users, you may skip the
decoration of schema routes by setting the 'POTION_DECORATE_SCHEMA_ENDPOINTS' configuration variable
to False.

Peewee backend

Potion also includes a Peewee backend if you want a more lightweight ORM. The Peewee backend is very similar to
the SQLAlchemy one and only requires a few minor changes to the example above.

1.2. Quick Start Guide 15

Flask-Potion Documentation, Release 0.0.0

First, you’ll need to install peewee:

$ pip install peewee

Second, when instantiating your Potion API you’ll want to set the default manager to the PeeweeManager:

from flask_potion.contrib.peewee import PeeweeManager

...

api = Api(app, default_manager=PeeweeManager)

After that you can pass your Peewee models to your ModelResources just like you would with SQLAlchemy:

from peewee import Model, CharField, IntegerField

class Book(Model):
title = CharField(null=False)
year_published = IntegerField()

class Meta:
database = db

class BookResource(ModelResource):
class Meta:

model = Book

See the examples directory for a fully functioning example using Peewee.

MongoEngine backend

If you are more of a NoSQL person, you can use MongoEngine — an ORM for MongoDB.

First ensure you have installed the flask_mongoengine package:

$ pip install flask_mongoengine

The MongoEngine manager works just like the other managers. See the examples directory for an example using
MongoEngine.

Next steps...

This guide has only skimmed the surface of what Potion can do for you.

In particular you may be interested in Permissions with Flask-Principal, a guide to a fully-fledged permissions system
for SQLAlchemy using Flask-Principal.

Potion API clients

Do you need a client for Potion? Look no further:

• potion-client is a client written in Python that auto-generates Resources using APIs’ JSON schema endpoints.
IPython/Jupyter Notebook support helps explore APIs.

• potion-node is a client written in TypeScript for Node with integrations for AngularJS 1.x and AngularJS 2+.

16 Chapter 1. User’s guide

https://flask-mongoengine.readthedocs.org/en/latest/
https://github.com/biosustain/potion-client
https://github.com/biosustain/potion-node

Flask-Potion Documentation, Release 0.0.0

Field types

Raw field class

class fields.Raw(schema, io=’rw’, default=None, attribute=None, nullable=False, title=None, descrip-
tion=None)

This is the base class for all field types, can be given any JSON-schema.

>>> f = fields.Raw({"type": "string"}, io="r")
>>> f.response
{'readOnly': True, 'type': 'string'}

Parameters

• io – one or more of “r” (read), “c” (create), “u” (update) and “w” (write), default: “rw”;
used to control presence in fieldsets/parent schemas

• schema – JSON-schema for field, or callable resolving to a JSON-schema when called

• default – optional default value, must be JSON-convertible; may be a callable with no
arguments

• attribute – key on parent object, optional.

• nullable – whether the field is nullable.

• title – optional title for JSON schema

• description – optional description for JSON schema

schema()
JSON schema representation

format(value)
Format a Python value representation for output in JSON. Noop by default.

convert(instance, update=False, validate=True)
Convert a JSON value representation to a Python object. Noop by default.

Reference field types

class fields.ToOne(resource, **kwargs)
Represents references between resources as json-ref objects.

Resource references can be one of the following:

•Resource class

•a string with a resource name

•a string with a module name and class name of a resource

•"self" — which resolves to the resource this field is bound to

Parameters resource – a resource reference

class fields.ToMany(resource, **kwargs)
Like ToOne, but for arrays of references.

1.3. Field types 17

Flask-Potion Documentation, Release 0.0.0

Basic field types

class fields.Any(**kwargs)
A field type that allows any value.

class fields.String(min_length=None, max_length=None, pattern=None, enum=None, format=None,
**kwargs)

Parameters

• min_length (int) – minimum length of string

• max_length (int) – maximum length of string

• pattern (str) – regex pattern that the string must match

• format (str) – a JSON Schema format string to validate against

Warning: The validation of format-strings is handled by jsonschema and may re-
quire additional package dependencies.

• enum (list) – list of strings with enumeration

class fields.Integer(minimum=None, maximum=None, default=None, **kwargs)

class fields.PositiveInteger(maximum=None, **kwargs)
A Integer field that only accepts integers >=1.

class fields.Number(minimum=None, maximum=None, exclusive_minimum=False, exclu-
sive_maximum=False, **kwargs)

class fields.Boolean(**kwargs)

class fields.Date(**kwargs)
A field for EJSON-style dates in the format:

{"$date": MILLISECONDS_SINCE_EPOCH}

Converts to datetime.date with UTC timezone.

class fields.DateTime(**kwargs)
A field for EJSON-style date-times in the format:

{"$date": MILLISECONDS_SINCE_EPOCH}

Converts to datetime.datetime with UTC timezone.

class fields.DateString(**kwargs)
A field for ISO8601-formatted date strings.

class fields.DateTimeString(**kwargs)
A field for ISO8601-formatted date-time strings.

class fields.Uri(**kwargs)

class fields.UUID(**kwargs)
A field for UUID strings in canonical form.

class fields.Custom(schema, converter=None, formatter=None, **kwargs)
A field type that can be passed any schema and optional formatter/converter transformers. It is a very thin
wrapper over Raw .

18 Chapter 1. User’s guide

http://python-jsonschema.readthedocs.io/en/latest/#module-jsonschema

Flask-Potion Documentation, Release 0.0.0

Parameters

• schema (dict) – JSON-schema

• converter (callable) – convert function

• formatter (callable) – format function

Composite field types

class fields.Array(cls_or_instance, min_items=None, max_items=None, unique=None, **kwargs)
A field for an array of a given field type.

Parameters

• cls_or_instance (Raw) – field class or instance

• min_items (int) – minimum number of items

• max_items (int) – maximum number of items

• unique (bool) – if True, all values in the list must be unique

class fields.Object(properties=None, pattern=None, pattern_properties=None, addi-
tional_properties=None, **kwargs)

A versatile field for an object, containing either properties all of a single type, properties matching a pattern, or
named properties matching some fields.

Raw.attribute is not used in pattern properties and additional properties.

Parameters

• properties – field class, instance, or dictionary of {property: field} pairs

• pattern (str) – an optional regular expression that all property keys must match

• pattern_properties (dict) – dictionary of {property: field} pairs

• additional_properties (Raw) – field class or instance

class fields.AttributeMapped(cls_or_instance, mapping_attribute=None, **kwargs)
Maps property keys from a JSON object to a list of items using mapping_attribute. The mapping attribute is the
name of the attribute where the value of the property key is set on the property values.

contrib.alchemy.fields.InlineModel is typically used with this field in a common SQLAlchemy
pattern.

Parameters

• cls_or_instance (Raw) – field class or instance

• pattern (str) – an optional regular expression that all property keys must match

• mapping_attribute (str) – mapping attribute

SQLAlchemy-specific field types

class contrib.alchemy.fields.InlineModel
Changed in version 0.11: Renamed from fields.sa.InlineModel to contrib.alchemy.fields.
InlineModel.

For creating SQLAlchemy models without having to give them their own resource.

Usage example:

1.3. Field types 19

Flask-Potion Documentation, Release 0.0.0

class FooResource(Resource):
class Meta:

model = Foo

class Schema:
Here, Foo.bars is a collection of Bar items
bars = fields.List(fields.InlineModel({

"name": fields.String(description="Bar name"),
"height": fields.Integer(description="Height of bar")

}, model=Bar))

Parameters

• properties (dict) – A dictionary of Raw objects

• model – An SQLAlchemy model

Internal types

Field types

class fields.Inline(resource, patchable=False, **kwargs)
Formats and converts items in a ModelResource using the resource’s schema.

Parameters

• resource – a resource reference as in ToOne

• patchable (bool) – whether to allow partial objects

class fields.ItemType(resource)
A string field that formats the name of a resource; read-only.

class fields.ItemUri(resource, attribute=None)
A string field that formats the url of a resource item; read-only.

Schema types

class schema.Schema
The base class for all types with a schema in Potion. Has response and a request attributes for the schema
to be used, respectively, for serializing and de-serializing.

Any class inheriting from schema needs to implement schema().

response
JSON-schema used to represent data returned by the server.

request
JSON-schema used for validation of data sent to the server.

schema()
Abstract method returning the JSON schema used by both response and request.

Returns a JSON-schema or a tuple of JSON-schemas in the formats (response_schema,
request_schema) or (read_schema, create_schema, update_schema)

format(value)
Formats a python object for JSON serialization. Noop by default.

20 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

Parameters value (object) –

Returns

convert(instance, update=False)
Validates a deserialized JSON object against request and converts it into a python object.

Parameters instance – JSON import

Raises PotionValidationError – if validation failed

parse_request(request)
Parses a Flask request object, validates it the against request and returns the converted request data.

Parameters request – Flask request object

Returns

format_response(response)
Takes a response value, which can be a data object or a tuple (data, code) or (data, code,
headers) and formats it using format().

Parameters response – A response tuple.

Returns A tuple in the form (data, code, headers)

class schema.FieldSet(fields, required_fields=None)
A schema representation of a dictionary of fields.Raw objects.

Uses the fields’ io attributes to determine whether they are read-only, write-only, or read-write.

Parameters

• fields (dict) – a dictionary of fields.Raw objects

• required_fields – a list or tuple of field names that are required during parsing

convert(instance, update=False, pre_resolved_properties=None, patchable=False, strict=False)

Parameters

• instance – JSON-object

• pre_resolved_properties – optional dictionary of properties that are already
known

• patchable (bool) – when True does not check for required fields

• strict (bool) –

Returns

Filters

Filter expressions

Changed in version 0.11: Meta.allowed_filters has been renamed to Meta.filters and the format for
filter expressions has changed.

Meta.filters may contain an expression used to specify which properties of items belonging to a resource can be
filtered, and how.

The filters expression can be a bool or a dict keyed by field names. The values of the dict can be either a bool
or a list of filter names. The '*' attribute is a wildcard for any remaining field names.

1.4. Filters 21

Flask-Potion Documentation, Release 0.0.0

For example, the following allows all filters:

filters = True

The following allows filtering on the "name" field:

filters = {
"name": True

}

The following allows filtering by equals and not equals on the "name" field:

filters = {
"name": ['eq', 'ne']

}

In addition it is also possible to specify custom filters this way:

filters = {
"name": {

"text": MyTextFilter
},
"*": True

}

Built-in default filters

Filters are implemented for each contributed backend individually. The following filter classes are implemented for
most or all backends:

22 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

Name Filter class Description Used with
— filters.

EqualFilter
Equal fields.Boolean, fields.String, fields.Integer,

fields.Number, fields.ToOne, fields.Date,
fields.DateTime, fields.DateString,
fields.DateTimeString

ne filters.
NotEqualFilter

Not equal fields.Boolean, fields.String, fields.Integer,
fields.Number, fields.ToOne

in filters.
InFilter

In (expects
an Array)

fields.String, fields.Integer, fields.Number,
fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

con-
tains

filters.
ContainsFilter

Contains fields.Array , fields.ToMany

lt filters.
LessThanFilter

Less than fields.String, fields.Integer, fields.Number,
fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

gt filters.
GreaterThanFilter

Greater than fields.String, fields.Integer, fields.Number,
fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

lte filters.
LessThanEqualFilter

Less than or
equal

fields.String, fields.Integer, fields.Number,
fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

gte filters.
GreaterThanEqualFilter

Greater than
or equal

fields.String, fields.Integer, fields.Number,
fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

con-
tains

filters.
StringContainsFilter

Contains
(String)

fields.String

icon-
tains

filters.
StringIContainsFilter

Contains
(String, case-
insensitive)

fields.String

startswithfilters.
StartsWithFilter

Starts with fields.String

endswithfilters.
EndsWithFilter

Ends with fields.String

is-
tartswith

filters.
IStartsWithFilter

Starts with
(case-
insensitive)

fields.String

iendswithfilters.
IEndsWithFilter

Ends with
(case-
insensitive)

fields.String

be-
tween

filters.
DateBetweenFilter

Date between fields.Date, fields.DateTime, fields.DateString,
fields.DateTimeString

Note: filters.EqualFilter uses both the keys 'eq' and None. This is so that you can write an equality
comparison both ways:

GET /user?where={"name": "foo"}
GET /user?where={"name": {"$eq": "foo"}}

filters.BaseFilter

New in version 0.11.

1.4. Filters 23

Flask-Potion Documentation, Release 0.0.0

class flask_potion.filters.BaseFilter(name, field=None, attribute=None)
Base-class for all filter types. Filters are specified on a field-level. Each backend implements its own filters and
defaults. Custom filters can be specified using the ModelResource.Meta.filter configuration.

Named and unnamed filters:

EqualFilter is a special filter type. This is because an equality condition is can be written in the for-
mat {"property": condition}, whereas every other filter needs to be written as {"property":
{"$filter": condition}}. To implement this, a filter can be either named or unnamed.

Due to the way the equality comparison is done, users need to be watchful when comparing objects. Some
object comparisons can be ambiguous, e.g. {"foo": {"$foo": "bar"}}. If a condition contains
an object with exactly one property, the name of the property will be matched against all valid filters for that
field. If necessary, the equality filter can be declared explicitly to avoid comparing against the wrong filter, e.g.
{"foo": {"$eq": {"$foo": "bar"}}}.

Multiple filters can have the same filter name so long as they are not valid for the same field types. For example,
StringContainsFilter for strings and ContainsFilter for arrays.

attribute
Attribute to filter on. Defaults to field.attribute.

field
Field to filter on.

name
Name of the filter as specified in the where object in the GET request. A filter foo on field field is
specified as: ?where={“field”: {“$foo”: filter-expression}}

op(a, b)
Matches an attribute of an item a against a value b provided by the user.

Parameters

• a – item’s attribute’s value

• b – value filtered by

Returns True on match, False otherwise

schema()
Returns the schema for this filter.

This depends on the name of the filter. If the filter is named, it needs to be formatted as {“$name”:
schema}. Usually the equality filter is unnamed and all other filters are named.

Api class

There is not much to say about Api except that it has an optional prefix and decorators. Use:

api.add_resource(YourResource)

To add a resource to the API. You can only add a single resource with a given name.

class flask_potion.Api(app=None, decorators=None, prefix=None, title=None, description=None, de-
fault_manager=None)

This is the Potion extension.

You need to register Api with a Flask application either upon initializing Api or later using init_app().

Parameters

24 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

• app – a Flask instance

• decorators (list) – an optional list of decorator functions

• prefix – an optional API prefix. Must start with “/”

• title (str) – an optional title for the schema

• description (str) – an optional description for the schema

• default_manager (Manager) – an optional manager to use as default. If SQLAlchemy
is installed, will use contrib.alchemy.SQLAlchemyManager

add_resource(resource)
Add a Resource class to the API and generate endpoints for all its routes.

Parameters resource (Resource) – resource

Returns

Routes & Route Sets

class routes.Route(method=None, view_func=None, rule=None, attribute=None, rel=None, title=None,
description=None, schema=None, response_schema=None, format_response=True)

Routes are not bound to a specific resource and their schema, generated using schema_factory() can vary
depending on the resource.

If view_func has an __annotations__ attribute (a Python 3.x function annotation), the annotations will
be used to generate the request_schema and response_schema. The return annotation in this case is
expected to be a schema.Schema used for responses, and all other annotations are expected to be of type
fields.Raw and are combined into a schema.Fieldset.

relation
A relation for the string, equal to rel if one was given.

request_schema
request schema (not resource-bound)

response_schema
response schema (not resource-bound)

@METHOD(rule=None, attribute=None, rel=None, title=None, description=None, schema=None, re-
sponse_schema=None, format_response=True)

A decorator for registering the METHOD method handler of a route. Can be used with or without argu-
ments and on both class and route instances. The rule and attribute arguments are only available on
the class.

When used with an instance will add or replace the view function for the METHOD method of this Route
with the decorated function; otherwise instantiates a new Route with the view function.

This decorator is defined for the GET, PUT, POST, PATCH and DELETE methods.

Parameters

• rule (str) – (class-only) route URI relative to the resource, defaults to /
{attribute}, replacing any '_' (underscore) in attribute with '-' (dash).

• attribute (str) – (class-only) attribute on the parent resource, used to identify the
route internally; defaults to the attribute name of the decorated view function within the
parent resource.

• rel (str) – relation of the method link to the resource

1.6. Routes & Route Sets 25

Flask-Potion Documentation, Release 0.0.0

• title (str) – title of link schema

• description (str) – description of link schema

• schema (schema.Schema) – request schema

• response_schema (schema.Schema) – response schema

• format_response (bool) – whether the response should be converted using the re-
sponse schema

schema
Used to get and set the request schema for the most recently decorated request method view function

response_schema
Used to get and set the response schema for the most recently decorated request method view function

method_links
A dictionary mapping of method names (in upper case) to routes.Link objects containing the method
view functions.

Parameters

• method (str) – a HTTP request method name (upper case)

• view_func (callable) – view function

• rule – url rule string or callable returning a string

• rel (str) – relation

• title (str) – title of schema

• description (str) – description of schema

• route (routes.Route) – route this link belongs to

• schema (schema.Schema) – request schema

• response_schema (schema.Schema) – response schema

• format_response (bool) – whether the response should be converted using the re-
sponse schema

schema_factory(resource)
Returns a link schema for a specific resource.

rule_factory(resource, relative=False)
Returns a URL rule string for this route and resource.

Parameters

• resource (flask_potion.Resource) –

• relative (bool) – whether the rule should be relative to resource.
route_prefix

view_factory(name, resource)
Returns a view function for all links within this route and resource.

Parameters

• name – Flask view name

• resource (flask_potion.Resource) –

26 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

class routes.ItemRoute(method=None, view_func=None, rule=None, attribute=None, rel=None, ti-
tle=None, description=None, schema=None, response_schema=None, for-
mat_response=True)

This route can be used with flask_potion.ModelResource. It is a simple extension over Route with
the following adjustments:

•rule_factory() is changed to prefix <{id_converter}:id> with any rule.

•It changes the implementation of view_factory() so that it passes the resolved resource item matching
id as the first positional argument to the view function.

class routes.RouteSet
An abstract class for combining related routes into one, which can also be used as a route factory.

routes()

Returns an iterator over Route objects

class routes.Relation(resource, backref=None, io=’rw’, attribute=None, **kwargs)
Used to define a relation to another ModelResource.

class routes.ItemAttributeRoute(cls_or_instance, io=None, attribute=None)

Parameters

• cls_or_instance (fields.Raw) – a field class or instance

• attribute (str) – defaults to the field’s attribute attribute

• io (str) – r, u, or ru - defaults to the field’s io attribute

Resources

Resource

Resource is the base class for all other resource types and by contains only one route, which returns the schema for
the resource.

class flask_potion.Resource
A plain resource with nothing but a schema.

A resource is configured using the Schema and Meta attributes as well as any properties that are of type
routes.Route or routes.RouteSet.

Meta class attributes:

1.7. Resources 27

Flask-Potion Documentation, Release 0.0.0

Attribute
name

De-
fault

Description

name — Name of the resource; defaults to the lower-case of the model’s class name
title None JSON-schema title declaration
descrip-
tion

None JSON-schema description declaration

ex-
clude_routes

() A list of strings; any routes — including inherited routes — whose
Route.relation match one of these string is omitted from the resource.

route_decorators{} A dictionary of decorators to apply to routes in the resource. The keys must match the
Route.relation attribute.

ex-
clude_fields

() A list of fields that should not be imported from the model.

re-
quired_fields

() Fields that are automatically imported from the model are automatically required if
their columns are not nullable and do not have a default.

read_only_fields() A list of fields that are returned by the resource but are ignored in POST and PATCH
requests. Useful for e.g. timestamps.

write_only_fields() A list of fields that can be written to but are not returned. For secret stuff.

Usage example:

class LogResource(Resource):
class Schema:

level = fields.String(enum=['info', 'warning', 'error'])
message = fields.String()

class Meta:
name = 'log'

@Route.POST('',
rel="create",
schema=fields.Inline('self'),
response_schema=fields.Inline('self'))

def create(self, properties):
print('{level}: {message}'.format(**properties))
return properties

api
Back reference to the Api this resource is registered on.

meta
A AttributeDict of configuration attributes collected from the Meta attributes of the base classes.

routes
A dictionary of routes registered with this resource. Keyed by Route.relation.

schema
A FieldSet containing fields collected from the Schema attributes of the base classes.

route_prefix
The prefix URI to any route in this resource; includes the API prefix.

described_by()
A Route at /schema that contains the JSON Hyper-Schema for this resource.

ModelResource

ModelResource is written for create, read, update, delete actions on collections of items matching the resource

28 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

schema.

A data store connection is maintained by a manager.Manager instance. The manager class can be specified in
Meta.manager; if no manager is specified, Api.default_manager is used. Managers are configured through
attributes in Meta. Most managers expect a model to be defined under Meta.model.

class flask_potion.ModelResource

create()
A link — part of a Route at the root of the resource — for creating new items.

Parameters properties –

Returns created item

instances()
A link — part of a Route at the root of the resource — for reading item instances.

Parameters

• where –

• sort –

• page (int) –

• per_page (int) –

Returns list of items

read()
A link — part of a Route at /<{Resource.meta.id_converter}:id> — for reading a specific
item.

Parameters id – item id

Returns item

update()
A link — part of a Route at /<{Resource.meta.id_converter}:id> — for updating a specific
item.

Parameters

• id – item id

• properties – changes

Returns item

destroy()
A link — part of a Route at /<{Resource.meta.id_converter}:id> — for deleting a specific
item.

Parameters id – item id

Returns (None, 204)

1.7. Resources 29

Flask-Potion Documentation, Release 0.0.0

Managers

Manager base class

manager.Manager is used by ModelResource to implement a backend integration.

class flask_potion.manager.Manager(resource, model)

Parameters

• resource (flask_potion.resource.Resource) – resource class

• model – model read from Meta.model or None

relation_instances(item, attribute, target_resource, page=None, per_page=None)

Parameters

• item –

• attribute –

• target_resource –

• page –

• per_page –

Returns

relation_add(item, attribute, target_resource, target_item)

Parameters

• item –

• attribute –

• target_resource –

• target_item –

Returns

relation_remove(item, attribute, target_resource, target_item)

Parameters

• item –

• attribute –

• target_resource –

• target_item –

Returns

paginated_instances(page, per_page, where=None, sort=None)

Parameters

• page –

• per_page –

• where –

• sort –

30 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

Returns a Pagination object or similar

instances(where=None, sort=None)

Parameters

• where –

• sort –

Returns

first(where=None, sort=None)

Parameters

• where –

• sort –

Returns

Raises exceptions.ItemNotFound –

create(properties, commit=True)

Parameters

• properties –

• commit –

Returns

read(id)

Parameters id –

Returns

update(item, changes, commit=True)

Parameters

• item –

• changes –

• commit –

Returns

delete(item)

Parameters item –

Returns

delete_by_id(id)

Parameters id –

Returns

class flask_potion.manager.RelationalManager(resource, model)
RelationalManager is a base class for managers that do relational lookups on the basis of a query builder.

1.8. Managers 31

Flask-Potion Documentation, Release 0.0.0

Manager implementations

The following backend managers ship with Flask-Potion:

class contrib.memory.MemoryManager(resource, model)
An in-memory, pure-python Manager implementation.

Warning: This manager is intended for debugging & testing only and should not be used in production.

class contrib.alchemy.SQLAlchemyManager(resource, model)
A manager for SQLAlchemy models.

Expects that Meta.model contains a SQLALchemy declarative model.

class contrib.peewee.PeeweeManager(resource, model)
A manager for Peewee models.

Additionally, contrib.alchemy.SQLAlchemyManager can be extended with contrib.principals.
PrincipalsMixin to form a new manager that implements a permissions system based on Flask-Principals.

Signals

Potion comes with several Blinker signals. The signals can be used to pre-process and post-process most parts of the
read, create, update cycle.

Resources using the SQLAlchemyManager or PeeweeManager hook into these signals. Other Manager imple-
mentations should be written to hook into them as well.

Signal listeners can edit the item:

>>> @before_create.connect_via(ArticleResource)
... def on_before_create_article(sender, item):
... item.author_id = current_user.id

Listeners may also raise exceptions:

>>> @before_create.connect_via(ArticleResource)
... def on_before_create_article(sender, item):
... if not current_user.is_editor:
... raise BadRequest()

The complete list of signals:

class signals.before_create

Parameters

• sender – item resource

• item – instance of item

class signals.after_create

Parameters

• sender – item resource

• item – instance of item

32 Chapter 1. User’s guide

http://pythonhosted.org/blinker/

Flask-Potion Documentation, Release 0.0.0

class signals.before_update

Parameters

• sender – item resource

• item – instance of item

• changes (dict) – dictionary of changes, already parsed

class signals.after_update

Parameters

• sender – item resource

• item – instance of item

• changes (dict) – dictionary of changes, already parsed

class signals.before_delete

Parameters

• sender – item resource

• item – instance of item

class signals.after_delete

Parameters

• sender – item resource

• item – instance of item

class signals.before_add_to_relation

Parameters

• sender – parent resource

• item – instance of parent item

• attribute – name of relationship to child

• child – instance of child item

class signals.after_add_to_relation

Parameters

• sender – parent resource

• item – instance of parent item

• attribute – name of relationship to child

• child – instance of child item

class signals.before_remove_from_relation

Parameters

• sender – parent resource

• item – instance of parent item

• attribute – name of relationship to child

• child – instance of child item

1.9. Signals 33

Flask-Potion Documentation, Release 0.0.0

class signals.after_remove_from_relation

Parameters

• sender – parent resource

• item – instance of parent item

• attribute – name of relationship to child

• child – instance of child item

Note: Relation-related signals are only used by Relation, They do not apply to relations created or removed by
updating an item with fields.ToOne or fields.ToMany fields.

Permissions with Flask-Principal

Flask-Potion includes a permission system. The permissions system is built on Flask-Principal. and enabled by
decorating a manager.RelationalManager with contrib.principals.principals, which returns a
class extending both the manager and contrib.principals.PrincipalMixin.

Permissions are specified as a dict in Meta.permissions.

Defining Permissions

There are four basic actions — read, create, update, delete — for which permissions must be defined. Additional
virtual actions can be declared for various purposes.

For example, the default permission declaration looks somewhat like this:

class Meta:
permissions = {

'read': 'yes',
'create': 'no',
'update': 'create',
'delete': 'update'

}

Patterns and Needs they produce:

34 Chapter 1. User’s guide

https://pythonhosted.org/Flask-Principal/

Flask-Potion Documentation, Release 0.0.0

Pattern Matches Description
{action} a key in the permissions dict If equal to the action it is de-

clared for — e.g. {'create':
'create'} — evaluate to:
HybridItemNeed({action},
resource_name)
Otherwise re-use needs from other
action.

{role} not a key in the permissions dict RoleNeed({role})
{action}:{field} *:* Copy {action} permissions

from ToOne linked resource at
{field}.

user:{field} user:* UserNeed(item.{field}.
id) for ToOne fields.

no, nobody no Do not permit.
yes, everybody yes Always permit.

Note: When protecting an ItemRoute, read access permissions, and updates using the resource manager are
checked automatically; for other actions, permissions have to be checked manually from within the function. The
manager has helper functions such as PrincipalMixin.can_update_item() to facilitate this.

Example API with permissions

Changed in version 0.11: The PrincipalManager extending SQLAlchemyManager has been replaced by a
principals() class-decorator.

We’re going to go ahead and create an example API using PrincipalMixin with Flask-Login for authentication.
Since there are quite a few moving parts, this example is split up into several sections.

Our example is a simple blog with articles and comments. First, let’s create the database models:

from flask import Flask
from flask_sqlalchemy import SQLAlchemy
from flask_login import UserMixin
from sqlalchemy.orm import relationship

app = Flask(__name__)
app.config['SECRET_KEY'] = 'secret' # XXX replace with actual secret and don't keep
→˓it in source code

db = SQLAlchemy(app)

class User(UserMixin, db.Model):
id = db.Column(db.Integer, primary_key=True)
username = db.Column(db.String(), nullable=False)
is_admin = db.Column(db.Boolean(), default=False)
is_editor = db.Column(db.Boolean(), default=False)

class Article(db.Model):
id = db.Column(db.Integer, primary_key=True)
author_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=False)
author = relationship(User)
content = db.Column(db.Text)

1.10. Permissions with Flask-Principal 35

https://flask-login.readthedocs.org

Flask-Potion Documentation, Release 0.0.0

class Comment(db.Model):
id = db.Column(db.Integer, primary_key=True)
article_id = db.Column(db.Integer, db.ForeignKey(Article.id), nullable=False)
author_id = db.Column(db.Integer, db.ForeignKey(User.id), nullable=False)
article = relationship(Article)
author = relationship(User)
message = db.Column(db.Text)

db.create_all()

We’re going to use Flask-Login to authenticate requests using Basic Authentication:

from flask_login import LoginManager, current_user

login_manager = LoginManager(app)

@login_manager.request_loader
def load_user_from_request(request):

if request.authorization:
username, password = request.authorization.username, request.authorization.

→˓password

XXX replace this with an actual password check.
if username == password:

return User.query.filter_by(username=username).first()
return None

This is where Flask-Principal comes in. With every request it adds the needs the identity should provide. Authen-
ticated users are given a user need and maybe some role needs. If this example had some top-level object based
permissions (think groups, projects, teams, etc.) they would also be added here.

from flask_principal import Principal, Identity, UserNeed, AnonymousIdentity,
→˓identity_loaded, RoleNeed

principals = Principal(app)

@principals.identity_loader
def read_identity_from_flask_login():

if current_user.is_authenticated():
return Identity(current_user.id)

return AnonymousIdentity()

@identity_loaded.connect_via(app)
def on_identity_loaded(sender, identity):

if not isinstance(identity, AnonymousIdentity):
identity.provides.add(UserNeed(identity.id))

if current_user.is_editor:
identity.provides.add(RoleNeed('editor'))

if current_user.is_admin:
identity.provides.add(RoleNeed('admin'))

36 Chapter 1. User’s guide

Flask-Potion Documentation, Release 0.0.0

Finally, we create our API with the login_required decorator from Flask-Login.

from flask_login import login_required
from flask_potion import fields, signals, Api, ModelResource
from flask_potion.contrib.alchemy import SQLAlchemyManager
from flask_potion.contrib.principals import principals

api = Api(app, decorators=[login_required])

class PrincipalResource(ModelResource):
class Meta:

manager = principals(SQLAlchemyManager)

class UserResource(PrincipalResource):
class Meta:

model = User

class ArticleResource(PrincipalResource):
class Schema:

author = fields.ToOne('user')

class Meta:
model = Article
read_only_fields = ['author']
permissions = {

'create': 'editor',
'update': ['user:author', 'admin']

}

class CommentResource(PrincipalResource):
class Schema:

article = fields.ToOne('article')
author = fields.ToOne('user')

class Meta:
model = Comment
read_only_fields = ['author']
permissions = {

'create': 'anybody',
'update': 'user:author',
'delete': ['update:article', 'admin']

}

api.add_resource(UserResource)
api.add_resource(ArticleResource)
api.add_resource(CommentResource)

add the author to articles & comments when they are created:
@signals.before_create.connect_via(ANY)
def before_create_article_comment(sender, item):

if issubclass(sender, (ArticleResource, CommentResource)):
item.author_id = current_user.id

We’ve implemented the following permissions:

• only editors can create articles

1.10. Permissions with Flask-Principal 37

Flask-Potion Documentation, Release 0.0.0

• articles can be updated or deleted by either their authors or by admins

• comments can be created by anyone who is authenticated

• comments can updated only by the person who wrote the comment, but deleted both by admins and the author
of the article

Now we just need to start the app:

if __name__ == '__main__':
add some example users & run the application
db.session.add(User(username='editorA', is_editor=True))
db.session.add(User(username='editorB', is_editor=True))
db.session.add(User(username='admin', is_admin=True))
db.session.add(User(username='user'))
db.session.commit()

app.run()

You can find the complete example code on GitHub under:

examples/permissions_example.py

http --auth editorA:editorA :5000/article content=foo

HTTP/1.0 200 OK
Content-Length: 71
Content-Type: application/json
Date: Sun, 08 Feb 2015 10:48:03 GMT
Server: Werkzeug/0.9.6 Python/3.3.2
Set-Cookie: session=.
→˓eJyrVorPTFGyUjK3SEw0TDOzSDRPtDRJtUxNMzZKM0pNNE4zNks1TU6zVNJRykxJzSvJLKnUSywtyYgvqSxIVbLKK83JQZIBGWVYCwBQWxtd.
→˓B7jQYw.Nhh6qE-h5WrGPfsYibXnDzCaJQM; HttpOnly; Path=/

{
"$uri": "/article/2",
"author": {

"$ref": "/user/1"
},
"content": "foo"

}

Object-based permissions

The example above did already sort of touch on object-based permissions, with the 'user:author' pattern that
restricts access to the user who has authored a comment or article. We’ve also used permissions options, with more
than one need potentially providing access. Finally, you have seen a hint of cascading object-based permissions with
the 'update:article' pattern that conditions access to the permissions on a relation.

There is another permission layer, building on flask_principal.ItemNeed, for object-specific permissions.
You would want to use them on something important, such as this project resource:

class ProjectResource(ModelResource):
class Meta:

manager = principals(SQLAlchemyManager)
model = Project
permissions = {

38 Chapter 1. User’s guide

https://pythonhosted.org/Flask-Principal/index.html#flask_principal.ItemNeed

Flask-Potion Documentation, Release 0.0.0

'create': 'anybody',
'update': 'manage',
'manage': 'manage'

}

To update a project, your identity needs this need:

ItemNeed('manage', PROJECT_ID, 'project')

The pair {'manage': 'manage'} makes manage a new virtual action, which is why the
flask_principals.ItemNeed wants a 'manage' permission. We could also have written {'update':
'update'} — then the required need would have been:

ItemNeed('update', PROJECT_ID, 'project')

With cascading permissions, role-based, user-based, and object-based permissions you should now have all the tools
to implement all sorts of complex permissions setups.

PrincipalMixin class

class flask_potion.contrib.principals.PrincipalMixin(*args, **kwargs)

get_permissions_for_item(item)
Returns a dictionary of evaluated permissions for an item. :param item: :return: Dictionary in the form
{operation: bool, ..}

can_create_item(item)
Looks up permissions on whether an item may be created. :param item:

can_update_item(item, changes=None)
Looks up permissions on whether an item may be updated. :param item: :param changes: dictionary of
changes

can_delete_item(item)
Looks up permissions on whether an item may be deleted. :param item:

Efficiency

Those who have worked with Flask-Principal know that it is on its own not well-suited for object-based permissions
where large numbers of objects are involved, because each permission has to be loaded into memory as ItemNeed at
the start of the session.

The permission system built into Potion introduces the HybridNeed and HybridPermission classes to solve
this issue. They can either be evaluated directly or be applied to SQLAlchemy queries, and are therefore efficient with
any number of object-based permissions.

class flask_potion.contrib.principals.needs.HybridNeed
HybridNeed base class. Hybrid needs can both be evaluated directly or produce an expression for use with
SQLAlchemy.

class flask_potion.contrib.principals.permission.HybridPermission(*needs)
Hybrid flask_principal.Permission that evaluates both regular and hybrid needs.

allows(identity)
Determines whether a given identity meets this permission.

1.10. Permissions with Flask-Principal 39

https://pythonhosted.org/Flask-Principal/index.html#flask_principal.Permission

Flask-Potion Documentation, Release 0.0.0

Parameters identity (flask_principal.Identity) – An identity with a set of pro-
vided needs

can(item=None)
Depending on whether or not item is given, this function either:

•evaluates all regular needs needs

•also evaluates the hybrid needs against the item

If any of the needs are met, the function returns True.

Parameters item – SQLAlchemy model instance

Advanced Recipes

HistoryMixin

This mixin keeps a simple history of changes that have been made to a resource, storing them in a database table with
a JSON field. HistoryMixin is a drop-in addition to any ModelResource.

ChangeSet = fields.Object({
"updated_at": fields.DateTime(),
"changes": fields.List(fields.Object({

"attribute": fields.String(),
"old": fields.Any(nullable=True),
"new": fields.Any(nullable=True)

}))
})

class HistoryRecord(db.Model):
id = db.Column(db.Integer, primary_key=True)
object_type = db.Column(db.String(20), index=True, nullable=False)
object_id = db.Column(db.Integer, index=True, nullable=False)
updated_at = db.Column(db.DateTime, default=func.now(), nullable=False)
changes = db.Column(postgresql.JSONB)

__mapper_args__ = {
"order_by": "updated_at"

}

class HistoryMixin(object):
@ItemRoute.GET('/history', rel="history")
def history(self, item) -> fields.List(ChangeSet):

history = HistoryRecord.query \
.filter_by(object_type=self.meta.model.__tablename__,

object_id=getattr(item, self.meta.get('id_attribute', 'id'))) \
.all()

return history

@before_update.connect_via(ANY, weak=False)
def history_on_update(resource, item, changes):

if issubclass(resource, HistoryMixin):

40 Chapter 1. User’s guide

https://pythonhosted.org/Flask-Principal/index.html#flask_principal.Identity

Flask-Potion Documentation, Release 0.0.0

history = HistoryRecord(object_type=item.__tablename__,
object_id=getattr(item, resource.meta.get('id_

→˓attribute', 'id')),
changes=[])

fields_by_attribute = {
field.attribute or key: field for key, field in resource.schema.fields.

→˓items()
}

for attribute, change in changes.items():
field = fields_by_attribute[attribute]
history.changes.append({

"attribute": attribute,
"old": field.output(attribute, item),
"new": field.output(attribute, changes)

})

db.session.add(history)

ArchivingResource

Sometimes soft-deletion is preferable over full deletion. This custom ModelResource and Manager does not
delete items, instead it archives them, removing them from the main instances route. Archived items can be viewed in
the archive route from where they can be restored but not updated.

Replace RelationalManager with an appropriate base class, such as SQLAlchemyManager.
PrincipalManager can also be used as the base class for the manager with some minor changes.

class Location(Enum):
ARCHIVE_ONLY = 1
INSTANCES_ONLY = 2
BOTH = 3

class ArchiveManager(RelationalManager):
def _query(self, source=Location.INSTANCES_ONLY):

query = super()._query(self)

if source == Location.BOTH:
return query

elif source == Location.ARCHIVE_ONLY:
return query.filter(getattr(self.model, 'is_archived') == True)

else:
return query.filter(getattr(self.model, 'is_archived') == False)

def instances(self, where=None, sort=None, source=Location.INSTANCES_ONLY):
query = self._query(source)
if where:

expressions = [self._expression_for_condition(condition) for condition in
→˓where]

query = self._query_filter(query, self._and_expression(expressions))
if sort:

query = self._query_order_by(query, sort)
return query

1.11. Advanced Recipes 41

Flask-Potion Documentation, Release 0.0.0

def archive_instances(self, page, per_page, where=None, sort=None):
return self\

.instances(where=where, sort=sort, source=Location.ARCHIVE_ONLY)\

.paginate(page=page, per_page=per_page)

def read(self, id, source=Location.INSTANCES_ONLY):
query = self._query(source)
if query is None:

raise ItemNotFound(self.resource, id=id)
return self._query_filter_by_id(query, id)

class ArchivingResource(ModelResource):
class Meta:

manager = ArchiveManager
exclude_routes = ['destroy'] # we're using rel="archive" instead.

class Schema:
is_archived = fields.Boolean(io='r')

@Route.GET('/<int:id>', rel="self", attribute="instance")
def read(self, id) -> fields.Inline('self'):

return self.manager.read(id, source=Location.BOTH)

@read.PATCH(rel="update")
def update(self, properties, id):

item = self.manager.read(id, source=Location.INSTANCES_ONLY)
updated_item = self.manager.update(item, properties)
return updated_item

update.response_schema = update.request_schema = fields.Inline('self', patch_
→˓instance=True)

@update.DELETE(rel="archive")
def destroy(self, id):

item = self.manager.read(id, source=Location.INSTANCES_ONLY)
self.manager.update(item, {"is_archived": True})
return None, 204

@Route.GET("/archive")
def archive_instances(self, **kwargs):

return self.manager.archive_instances(**kwargs)

archive_instances.request_schema = archive_instances.response_schema = Instances()

@Route.GET('/archive/<int:id>', rel="readArchived")
def read_archive(self, id) -> fields.Inline('self'):

item = self.manager.read(id, source=Location.ARCHIVE_ONLY)

@Route.POST('/archive/<int:id>/restore', rel="restoreFromArchive")
def restore_from_archive(self, id) -> fields.Inline('self'):

item = self.manager.read(id, source=Location.ARCHIVE_ONLY)
return self.manager.update(item, {"is_archived": False})

42 Chapter 1. User’s guide

Python Module Index

f
fields, 17
flask_potion, 27
flask_potion.contrib.principals, 39
flask_potion.contrib.principals.needs,

39
flask_potion.contrib.principals.permission,

39
flask_potion.filters, 23

r
routes, 25

s
schema, 20
signals, 32

43

Flask-Potion Documentation, Release 0.0.0

44 Python Module Index

Index

A
add_resource() (flask_potion.Api method), 25
after_add_to_relation (class in signals), 33
after_create (class in signals), 32
after_delete (class in signals), 33
after_remove_from_relation (class in signals), 33
after_update (class in signals), 33
allows() (flask_potion.contrib.principals.permission.HybridPermission

method), 39
Any (class in fields), 18
Api (class in flask_potion), 24
api (flask_potion.Resource attribute), 28
Array (class in fields), 19
attribute (flask_potion.filters.BaseFilter attribute), 24
AttributeMapped (class in fields), 19

B
BaseFilter (class in flask_potion.filters), 23
before_add_to_relation (class in signals), 33
before_create (class in signals), 32
before_delete (class in signals), 33
before_remove_from_relation (class in signals), 33
before_update (class in signals), 32
Boolean (class in fields), 18

C
can() (flask_potion.contrib.principals.permission.HybridPermission

method), 40
can_create_item() (flask_potion.contrib.principals.PrincipalMixin

method), 39
can_delete_item() (flask_potion.contrib.principals.PrincipalMixin

method), 39
can_update_item() (flask_potion.contrib.principals.PrincipalMixin

method), 39
contrib.alchemy.fields.InlineModel (class in fields), 19
convert() (fields.Raw method), 17
convert() (schema.FieldSet method), 21
convert() (schema.Schema method), 21
create() (flask_potion.manager.Manager method), 31

create() (flask_potion.ModelResource method), 29
Custom (class in fields), 18

D
Date (class in fields), 18
DateString (class in fields), 18
DateTime (class in fields), 18
DateTimeString (class in fields), 18
delete() (flask_potion.manager.Manager method), 31
delete_by_id() (flask_potion.manager.Manager method),

31
described_by() (flask_potion.Resource method), 28
destroy() (flask_potion.ModelResource method), 29

F
field (flask_potion.filters.BaseFilter attribute), 24
fields (module), 17
FieldSet (class in schema), 21
first() (flask_potion.manager.Manager method), 31
flask_potion (module), 3, 21, 24, 27, 30, 34
flask_potion.contrib.principals (module), 39
flask_potion.contrib.principals.needs (module), 39
flask_potion.contrib.principals.permission (module), 39
flask_potion.filters (module), 23
format() (fields.Raw method), 17
format() (schema.Schema method), 20
format_response() (schema.Schema method), 21

G
get_permissions_for_item()

(flask_potion.contrib.principals.PrincipalMixin
method), 39

H
HybridNeed (class in flask_potion.contrib.principals.needs),

39
HybridPermission (class in

flask_potion.contrib.principals.permission),
39

45

Flask-Potion Documentation, Release 0.0.0

I
Inline (class in fields), 20
instances() (flask_potion.manager.Manager method), 31
instances() (flask_potion.ModelResource method), 29
Integer (class in fields), 18
ItemAttributeRoute (class in routes), 27
ItemRoute (class in routes), 26
ItemType (class in fields), 20
ItemUri (class in fields), 20

M
Manager (class in flask_potion.manager), 30
MemoryManager (class in contrib.memory), 32
meta (flask_potion.Resource attribute), 28
METHOD() (routes.Route method), 25
method_links (routes.Route attribute), 26
ModelResource (class in flask_potion), 29

N
name (flask_potion.filters.BaseFilter attribute), 24
Number (class in fields), 18

O
Object (class in fields), 19
op() (flask_potion.filters.BaseFilter method), 24

P
paginated_instances() (flask_potion.manager.Manager

method), 30
parse_request() (schema.Schema method), 21
PeeweeManager (class in contrib.peewee), 32
PositiveInteger (class in fields), 18
PrincipalMixin (class in flask_potion.contrib.principals),

39

R
Raw (class in fields), 17
read() (flask_potion.manager.Manager method), 31
read() (flask_potion.ModelResource method), 29
Relation (class in routes), 27
relation (routes.Route attribute), 25
relation_add() (flask_potion.manager.Manager method),

30
relation_instances() (flask_potion.manager.Manager

method), 30
relation_remove() (flask_potion.manager.Manager

method), 30
RelationalManager (class in flask_potion.manager), 31
request (schema.Schema attribute), 20
request_schema (routes.Route attribute), 25
Resource (class in flask_potion), 27
response (schema.Schema attribute), 20
response_schema (routes.Route attribute), 25, 26

Route (class in routes), 25
route_prefix (flask_potion.Resource attribute), 28
routes (flask_potion.Resource attribute), 28
routes (module), 25
routes() (routes.RouteSet method), 27
RouteSet (class in routes), 27
rule_factory() (routes.Route method), 26

S
Schema (class in schema), 20
schema (flask_potion.Resource attribute), 28
schema (module), 20
schema (routes.Route attribute), 26
schema() (fields.Raw method), 17
schema() (flask_potion.filters.BaseFilter method), 24
schema() (schema.Schema method), 20
schema_factory() (routes.Route method), 26
signals (module), 32
SQLAlchemyManager (class in contrib.alchemy), 32
String (class in fields), 18

T
ToMany (class in fields), 17
ToOne (class in fields), 17

U
update() (flask_potion.manager.Manager method), 31
update() (flask_potion.ModelResource method), 29
Uri (class in fields), 18
UUID (class in fields), 18

V
view_factory() (routes.Route method), 26

46 Index

	User's guide
	Installation
	Quick Start Guide
	Field types
	Filters
	Api class
	Routes & Route Sets
	Resources
	Managers
	Signals
	Permissions with Flask-Principal
	Advanced Recipes

	Python Module Index

